Statistical Pattern Recognition for Driving Styles Based on Bayesian Probability and Kernel Density Estimation

نویسندگان

  • Wenshuo Wang
  • Junqiang Xi
  • Xiaohan Li
چکیده

Driving styles have a great influence on vehicle fuel economy, active safety, and drivability. To recognize driving styles of path-tracking behaviors for different divers, a statistical pattern-recognition method is developed to deal with the uncertainty of driving styles or characteristics based on probability density estimation. First, to describe driver path-tracking styles, vehicle speed and throttle opening are selected as the discriminative parameters, and a conditional kernel density function of vehicle speed and throttle opening is built, respectively, to describe the uncertainty and probability of two representative driving styles, e.g., aggressive and normal. Meanwhile, a posterior probability of each element in feature vector is obtained using full Bayesian theory. Second, a Euclidean distance method is involved to decide to which class the driver should be subject instead of calculating the complex covariance between every two elements of feature vectors. By comparing the Euclidean distance between every elements in feature vector, driving styles are classified into seven levels ranging from low normal to high aggressive. Subsequently, to show benefits of the proposed pattern-recognition method, a cross-validated method is used, compared with a fuzzy logic-based pattern-recognition method. The experiment results show that the proposed statistical patternrecognition method for driving styles based on kernel density estimation is more efficient and stable than the fuzzy logic-based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature representation and discrimination based on Gaussian mixture model probability densities - Practices and algorithms

Statistical methods have certain advantages which advocate their use in pattern recognition. One central problem in statistical methods is estimation of class conditional probability density functions based on examples in a training set. In this study maximum likelihood estimation methods for Gaussian mixture models are reviewed and discussed from a practical point of view. In addition, good pr...

متن کامل

A Bayesian Approach for the Recognition of Control Chart Patterns

In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...

متن کامل

Kernel-based classification using quantum mechanics

This paper introduces a new nonparametric estimation approach inspired from quantum mechanics. Kernel density estimation associates a function to each data sample. In classical kernel estimation theory the probability density function is calculated by summing up all the kernels. The proposed approach assumes that each data sample is associated with a quantum physics particle that has a radial a...

متن کامل

Bandwidth Selection for Kernel Density Estimation Based on QQ-Plot

A new algorithm for the estimation of probability density functions has been considered in the paper. This founds a large number of applications in the context of statistical signal processing problems, such as detection, estimation, filtering or pattern recognition and classification. The proposed approach relies on the QQ-plot technique. The estimates of the first and second order statistics ...

متن کامل

A New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)

Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.01284  شماره 

صفحات  -

تاریخ انتشار 2016